Copied to
clipboard

G = C5×C22⋊C16order 320 = 26·5

Direct product of C5 and C22⋊C16

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C22⋊C16, C22⋊C80, C40.106D4, C23.2C40, C10.14M5(2), C20.60M4(2), (C2×C80)⋊5C2, (C2×C16)⋊1C10, (C2×C10)⋊3C16, (C2×C8).6C20, C2.1(C2×C80), (C2×C4).3C40, C8.26(C5×D4), (C2×C20).16C8, (C2×C40).40C4, C10.21(C2×C16), (C22×C4).8C20, C22.9(C2×C40), (C22×C8).4C10, (C22×C40).7C2, (C22×C10).7C8, C2.2(C5×M5(2)), (C22×C20).43C4, C4.10(C5×M4(2)), C10.40(C22⋊C8), (C2×C40).451C22, C20.158(C22⋊C4), C2.2(C5×C22⋊C8), (C2×C4).83(C2×C20), (C2×C10).68(C2×C8), C4.28(C5×C22⋊C4), (C2×C20).518(C2×C4), (C2×C8).105(C2×C10), SmallGroup(320,153)

Series: Derived Chief Lower central Upper central

C1C2 — C5×C22⋊C16
C1C2C4C8C2×C8C2×C40C2×C80 — C5×C22⋊C16
C1C2 — C5×C22⋊C16
C1C2×C40 — C5×C22⋊C16

Generators and relations for C5×C22⋊C16
 G = < a,b,c,d | a5=b2=c2=d16=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 90 in 66 conjugacy classes, 42 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, C10, C10, C16, C2×C8, C2×C8, C22×C4, C20, C20, C2×C10, C2×C10, C2×C10, C2×C16, C22×C8, C40, C40, C2×C20, C2×C20, C22×C10, C22⋊C16, C80, C2×C40, C2×C40, C22×C20, C2×C80, C22×C40, C5×C22⋊C16
Quotients: C1, C2, C4, C22, C5, C8, C2×C4, D4, C10, C16, C22⋊C4, C2×C8, M4(2), C20, C2×C10, C22⋊C8, C2×C16, M5(2), C40, C2×C20, C5×D4, C22⋊C16, C80, C5×C22⋊C4, C2×C40, C5×M4(2), C5×C22⋊C8, C2×C80, C5×M5(2), C5×C22⋊C16

Smallest permutation representation of C5×C22⋊C16
On 160 points
Generators in S160
(1 74 37 89 140)(2 75 38 90 141)(3 76 39 91 142)(4 77 40 92 143)(5 78 41 93 144)(6 79 42 94 129)(7 80 43 95 130)(8 65 44 96 131)(9 66 45 81 132)(10 67 46 82 133)(11 68 47 83 134)(12 69 48 84 135)(13 70 33 85 136)(14 71 34 86 137)(15 72 35 87 138)(16 73 36 88 139)(17 159 111 125 49)(18 160 112 126 50)(19 145 97 127 51)(20 146 98 128 52)(21 147 99 113 53)(22 148 100 114 54)(23 149 101 115 55)(24 150 102 116 56)(25 151 103 117 57)(26 152 104 118 58)(27 153 105 119 59)(28 154 106 120 60)(29 155 107 121 61)(30 156 108 122 62)(31 157 109 123 63)(32 158 110 124 64)
(2 30)(4 32)(6 18)(8 20)(10 22)(12 24)(14 26)(16 28)(34 104)(36 106)(38 108)(40 110)(42 112)(44 98)(46 100)(48 102)(50 129)(52 131)(54 133)(56 135)(58 137)(60 139)(62 141)(64 143)(65 146)(67 148)(69 150)(71 152)(73 154)(75 156)(77 158)(79 160)(82 114)(84 116)(86 118)(88 120)(90 122)(92 124)(94 126)(96 128)
(1 29)(2 30)(3 31)(4 32)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(33 103)(34 104)(35 105)(36 106)(37 107)(38 108)(39 109)(40 110)(41 111)(42 112)(43 97)(44 98)(45 99)(46 100)(47 101)(48 102)(49 144)(50 129)(51 130)(52 131)(53 132)(54 133)(55 134)(56 135)(57 136)(58 137)(59 138)(60 139)(61 140)(62 141)(63 142)(64 143)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 145)(81 113)(82 114)(83 115)(84 116)(85 117)(86 118)(87 119)(88 120)(89 121)(90 122)(91 123)(92 124)(93 125)(94 126)(95 127)(96 128)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,74,37,89,140)(2,75,38,90,141)(3,76,39,91,142)(4,77,40,92,143)(5,78,41,93,144)(6,79,42,94,129)(7,80,43,95,130)(8,65,44,96,131)(9,66,45,81,132)(10,67,46,82,133)(11,68,47,83,134)(12,69,48,84,135)(13,70,33,85,136)(14,71,34,86,137)(15,72,35,87,138)(16,73,36,88,139)(17,159,111,125,49)(18,160,112,126,50)(19,145,97,127,51)(20,146,98,128,52)(21,147,99,113,53)(22,148,100,114,54)(23,149,101,115,55)(24,150,102,116,56)(25,151,103,117,57)(26,152,104,118,58)(27,153,105,119,59)(28,154,106,120,60)(29,155,107,121,61)(30,156,108,122,62)(31,157,109,123,63)(32,158,110,124,64), (2,30)(4,32)(6,18)(8,20)(10,22)(12,24)(14,26)(16,28)(34,104)(36,106)(38,108)(40,110)(42,112)(44,98)(46,100)(48,102)(50,129)(52,131)(54,133)(56,135)(58,137)(60,139)(62,141)(64,143)(65,146)(67,148)(69,150)(71,152)(73,154)(75,156)(77,158)(79,160)(82,114)(84,116)(86,118)(88,120)(90,122)(92,124)(94,126)(96,128), (1,29)(2,30)(3,31)(4,32)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(33,103)(34,104)(35,105)(36,106)(37,107)(38,108)(39,109)(40,110)(41,111)(42,112)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,144)(50,129)(51,130)(52,131)(53,132)(54,133)(55,134)(56,135)(57,136)(58,137)(59,138)(60,139)(61,140)(62,141)(63,142)(64,143)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,145)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127)(96,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,74,37,89,140)(2,75,38,90,141)(3,76,39,91,142)(4,77,40,92,143)(5,78,41,93,144)(6,79,42,94,129)(7,80,43,95,130)(8,65,44,96,131)(9,66,45,81,132)(10,67,46,82,133)(11,68,47,83,134)(12,69,48,84,135)(13,70,33,85,136)(14,71,34,86,137)(15,72,35,87,138)(16,73,36,88,139)(17,159,111,125,49)(18,160,112,126,50)(19,145,97,127,51)(20,146,98,128,52)(21,147,99,113,53)(22,148,100,114,54)(23,149,101,115,55)(24,150,102,116,56)(25,151,103,117,57)(26,152,104,118,58)(27,153,105,119,59)(28,154,106,120,60)(29,155,107,121,61)(30,156,108,122,62)(31,157,109,123,63)(32,158,110,124,64), (2,30)(4,32)(6,18)(8,20)(10,22)(12,24)(14,26)(16,28)(34,104)(36,106)(38,108)(40,110)(42,112)(44,98)(46,100)(48,102)(50,129)(52,131)(54,133)(56,135)(58,137)(60,139)(62,141)(64,143)(65,146)(67,148)(69,150)(71,152)(73,154)(75,156)(77,158)(79,160)(82,114)(84,116)(86,118)(88,120)(90,122)(92,124)(94,126)(96,128), (1,29)(2,30)(3,31)(4,32)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(33,103)(34,104)(35,105)(36,106)(37,107)(38,108)(39,109)(40,110)(41,111)(42,112)(43,97)(44,98)(45,99)(46,100)(47,101)(48,102)(49,144)(50,129)(51,130)(52,131)(53,132)(54,133)(55,134)(56,135)(57,136)(58,137)(59,138)(60,139)(61,140)(62,141)(63,142)(64,143)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,145)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127)(96,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,74,37,89,140),(2,75,38,90,141),(3,76,39,91,142),(4,77,40,92,143),(5,78,41,93,144),(6,79,42,94,129),(7,80,43,95,130),(8,65,44,96,131),(9,66,45,81,132),(10,67,46,82,133),(11,68,47,83,134),(12,69,48,84,135),(13,70,33,85,136),(14,71,34,86,137),(15,72,35,87,138),(16,73,36,88,139),(17,159,111,125,49),(18,160,112,126,50),(19,145,97,127,51),(20,146,98,128,52),(21,147,99,113,53),(22,148,100,114,54),(23,149,101,115,55),(24,150,102,116,56),(25,151,103,117,57),(26,152,104,118,58),(27,153,105,119,59),(28,154,106,120,60),(29,155,107,121,61),(30,156,108,122,62),(31,157,109,123,63),(32,158,110,124,64)], [(2,30),(4,32),(6,18),(8,20),(10,22),(12,24),(14,26),(16,28),(34,104),(36,106),(38,108),(40,110),(42,112),(44,98),(46,100),(48,102),(50,129),(52,131),(54,133),(56,135),(58,137),(60,139),(62,141),(64,143),(65,146),(67,148),(69,150),(71,152),(73,154),(75,156),(77,158),(79,160),(82,114),(84,116),(86,118),(88,120),(90,122),(92,124),(94,126),(96,128)], [(1,29),(2,30),(3,31),(4,32),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(33,103),(34,104),(35,105),(36,106),(37,107),(38,108),(39,109),(40,110),(41,111),(42,112),(43,97),(44,98),(45,99),(46,100),(47,101),(48,102),(49,144),(50,129),(51,130),(52,131),(53,132),(54,133),(55,134),(56,135),(57,136),(58,137),(59,138),(60,139),(61,140),(62,141),(63,142),(64,143),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,145),(81,113),(82,114),(83,115),(84,116),(85,117),(86,118),(87,119),(88,120),(89,121),(90,122),(91,123),(92,124),(93,125),(94,126),(95,127),(96,128)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])

200 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F5A5B5C5D8A···8H8I8J8K8L10A···10L10M···10T16A···16P20A···20P20Q···20X40A···40AF40AG···40AV80A···80BL
order12222244444455558···8888810···1010···1016···1620···2020···2040···4040···4080···80
size11112211112211111···122221···12···22···21···12···21···12···22···2

200 irreducible representations

dim1111111111111111222222
type++++
imageC1C2C2C4C4C5C8C8C10C10C16C20C20C40C40C80D4M4(2)M5(2)C5×D4C5×M4(2)C5×M5(2)
kernelC5×C22⋊C16C2×C80C22×C40C2×C40C22×C20C22⋊C16C2×C20C22×C10C2×C16C22×C8C2×C10C2×C8C22×C4C2×C4C23C22C40C20C10C8C4C2
# reps121224448416881616642248816

Matrix representation of C5×C22⋊C16 in GL3(𝔽241) generated by

100
0980
0098
,
24000
010
0203240
,
100
02400
00240
,
7600
0222240
012119
G:=sub<GL(3,GF(241))| [1,0,0,0,98,0,0,0,98],[240,0,0,0,1,203,0,0,240],[1,0,0,0,240,0,0,0,240],[76,0,0,0,222,121,0,240,19] >;

C5×C22⋊C16 in GAP, Magma, Sage, TeX

C_5\times C_2^2\rtimes C_{16}
% in TeX

G:=Group("C5xC2^2:C16");
// GroupNames label

G:=SmallGroup(320,153);
// by ID

G=gap.SmallGroup(320,153);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,102,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^2=d^16=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽